Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36141129

RESUMO

With the successful development in computer vision, building a deep convolutional neural network (CNNs) has been mainstream, considering the character of shared parameters in a convolutional layer. Stacking convolutional layers into a deep structure improves performance, but over-stacking also ramps up the needed resources for GPUs. Seeing another surge of Transformers in computer vision, the issue has aroused severely. A resource-hungry model is hardly implemented for limited hardware or single-customers-based GPU. Therefore, this work focuses on these concerns and proposes an efficient but robust backbone, which equips with channel and spatial direction attentions, so the attentions help to expand receptive fields in shallow convolutional layers and pass the information to every layer. An attention-boosted network based on already efficient CNNs, Universal Pixel Attention Networks (UPANets), is proposed. Through a series of experiments, UPANets fulfil the purposes of learning global information with less needed resources and outshine many existing SOTAs in CIFAR-{10, 100}.

2.
Entropy (Basel) ; 24(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35626502

RESUMO

In the era of bathing in big data, it is common to see enormous amounts of data generated daily. As for the medical industry, not only could we collect a large amount of data, but also see each data set with a great number of features. When the number of features is ramping up, a common dilemma is adding computational cost during inferring. To address this concern, the data rotational method by PCA in tree-based methods shows a path. This work tries to enhance this path by proposing an ensemble classification method with an AdaBoost mechanism in random, automatically generating rotation subsets termed Random RotBoost. The random rotation process has replaced the manual pre-defined number of subset features (free pre-defined process). Therefore, with the ensemble of the multiple AdaBoost-based classifier, overfitting problems can be avoided, thus reinforcing the robustness. In our experiments with real-world medical data sets, Random RotBoost reaches better classification performance when compared with existing methods. Thus, with the help from our proposed method, the quality of clinical decisions can potentially be enhanced and supported in medical tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...